Authors: Bissantz, Nicolai
Holzmann, Hajo
Proksch, Katharina
Title: Confidence regions for images observed under the Radon transform
Language (ISO): en
Abstract: Recovering a function f from its integrals over hyperplanes (or line integrals in the two-dimensional case), that is, recovering f from the Radon transform Rf of f, is a basic problem with important applications in medical imaging such as computerized tomography (CT). In the presence of stochastic noise in the observed function Rf, we shall construct asymptotic uniform confidence regions for the function f of interest, which allows to draw conclusions regarding global features of f. Speci cally, in a white noise model as well as a fixed-design regression model, we prove a Bickel-Rosenblatt-type theorem for the maximal deviation of a kernel-type estimator from its mean, and give uniform estimates for the bias for f in a Sobolev smoothness class. The finite sample properties of the proposed methods are investigated in a simulation study.
Subject Headings: confidence bands
radon transform
nonparametric regression
inverse problems
Issue Date: 2014-01-14
Appears in Collections:Sonderforschungsbereich (SFB) 823

Files in This Item:
File Description SizeFormat 
DP_0214_SFB823_Bissantz_Holzmann_Proksch.pdfDNB811.87 kBAdobe PDFView/Open

This item is protected by original copyright

All resources in the repository are protected by copyright.