Autor(en): Rozgic, M.
Stiemer, M.
Titel: Mathematical Optimization for the Virtual Design of Process Chains with Electromagnetic Forming
Sprache (ISO): en
Zusammenfassung: In this work, a framework for virtual process design for coupled processes including electromagnetic impulse forming is presented. Virtual process design is here understood as the computer based identification of suitable geometry and process parameters to reach a predefined forming result via physically feasible process paths. Implementation of this concept relies on three pillars: a physical process model, its implementation within a numerical simulation, and a mathematical optimization algorithm. This methodology is particularly applied to a combination of deep drawing and subsequent electromagnetic forming (EMF). In this case, the model is given by an anisotropic elasto-viscoplastic material model augmented by damage evolution and coupled with the magneto-quasistatic approximation to Maxwell's equations. For constrained mathematical optimization, an inner point algorithm is applied. With this method for virtual process design at hand, several technological problems are addressed including tool coil design and the identification of ideal electrical parameters of the tool coil circuit. Employing this framework requires the identification of the material model described above. It turns out that a high precision identification of material parameters can be achieved with basically the same mathematical algorithm as derived for process identification.
Schlagwörter: metal forming
finite element method
design optimization
Schlagwörter (RSWK): Gießen <Urformen>
Magnetumformen
Finite-Elemente-Methode
Prozessoptimierung
URI: http://hdl.handle.net/2003/34922
http://dx.doi.org/10.17877/DE290R-16970
Erscheinungsdatum: 2016-04-27
Ist Teil von: 7th International Conference on High Speed Forming, April 27th-28th 2016, Dortmund, Germany
Enthalten in den Sammlungen:ICHSF 2016

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
3_Rozgic_ICHSF2016.pdfDNB1.46 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource ist urheberrechtlich geschützt.



Diese Ressource ist urheberrechtlich geschützt. rightsstatements.org