Autor(en): Schweizer, Ben
Titel: Effective Helmholtz problem in a domain with a Neumann sieve perforation
Sprache (ISO): en
Zusammenfassung: A first order model for the transmission of waves through a sound-hard perforation along an interface is derived. Mathematically, we study the Neumann problem for the Helmholtz equation in a complex geometry, the domain contains a periodic array of inclusions of size ε > 0 along a co-dimension 1 manifold. We derive effective equations that describe the limit as ε → 0. At leading order, the Neumann sieve perforation has no effect; the corrector is given by a Helmholtz equation on the unperturbed domain with jump conditions across the interface. The corrector equations are derived with unfolding methods in L^1-based spaces.
Schlagwörter: Helmholtz equation
perforation
thin layer
transmission condition
URI: http://hdl.handle.net/2003/37860
http://dx.doi.org/10.17877/DE290R-19847
Erscheinungsdatum: 2018-12-06
Enthalten in den Sammlungen:Schweizer, Ben Prof. Dr.
Preprints der Fakultät für Mathematik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Preprint 2018-08.pdfDNB452.13 kBAdobe PDFÖffnen/Anzeigen


Diese Ressource ist urheberrechtlich geschützt.



Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.