Full metadata record
DC FieldValueLanguage
dc.contributor.authorKutta, Tim-
dc.contributor.authorBissantz, Nicolai-
dc.contributor.authorChown, Justin-
dc.contributor.authorDette, Holger-
dc.date.accessioned2019-02-06T12:57:27Z-
dc.date.available2019-02-06T12:57:27Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/2003/37904-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-19891-
dc.description.abstractIn this paper we investigate an indirect regression model characterized by the Radon transformation. This model is useful for recovery of medical images obtained by computed tomography scans. The indirect regression function is estimated using a series estimator motivated by a spectral cut-off technique. Further, we investigate the empirical process of residuals from this regression, and show that it satsifies a functional central limit theorem.en
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;02/2019en
dc.subjectindirect regression modelen
dc.subjectempirical processen
dc.subjectRadon transformen
dc.subjectinverse problemsen
dc.subject.ddc310-
dc.subject.ddc330-
dc.subject.ddc620-
dc.titleThe empirical process of residuals from an inverse regressionen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dc.subject.rswkRegressionsanalysede
dc.subject.rswkApproximative Inverseen
dc.subject.rswkRadon-Transformationde
dcterms.accessRightsopen access-
eldorado.secondarypublicationfalsede
Appears in Collections:Sonderforschungsbereich (SFB) 823

Files in This Item:
File Description SizeFormat 
DP_0219_SFB823_Kutta_Bissantz_ Chown_Dette.pdfDNB427.12 kBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.