Autor(en): Voit, Michael
Woerner, Jeannette H.C.
Titel: Functional central limit theorems for multivariate Bessel processes in the freezing regime
Sprache (ISO): en
Zusammenfassung: Multivariate Bessel processes $(X_{t,k})_{t\ge0}$ describe interacting particle systems of Calogero-Moser-Sutherland type and are related with $\beta$-Hermite and $\beta$-Laguerre ensembles. They depend on a root system and a multiplicity $k$ which corresponds to the parameter $\beta$ in random matrix theory. In the recent years, several limit theorems were derived for $k\to\infty$ with fixed $t>0$ and fixed starting point. Only recently, Andraus and Voit used the stochastic differential equations of $(X_{t,k})_{t\ge0}$ to derive limit theorems for $k\to\infty$ with starting points of the form $\sqrt k\cdot x$ with $x$ in the interior of the corresponding Weyl chambers.Here we provide associated functional central limit theorems which are locally uniform in $t$.The Gaussian limiting processes admit explicit representations in terms of matrix exponentials and the solutions of the associated deterministic dynamical systems.
Schlagwörter: interacting particle systems
Calogero-Moser-Sutherland models
functional central limit theorems
zeros of Hermite polynomials
zeros of Laguerre polynomials
Hermite ensembles
Laguerre ensembles
Dyson Brownian motion
Erscheinungsdatum: 2019-01
Enthalten in den Sammlungen:Preprints der Fakultät für Mathematik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Preprint 2019-01.pdfDNB462 kBAdobe PDFÖffnen/Anzeigen

Diese Ressource ist urheberrechtlich geschützt.

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.