Full metadata record
DC FieldValueLanguage
dc.contributor.authorWegner, Nils-
dc.contributor.authorKotzem, Daniel-
dc.contributor.authorWessarges, Yvonne-
dc.contributor.authorEmminghaus, Nicole-
dc.contributor.authorHoff, Christian-
dc.contributor.authorTenkamp, Jochen-
dc.contributor.authorHermsdorf, Jörg-
dc.contributor.authorOvermeyer, Ludger-
dc.contributor.authorWalther, Frank-
dc.date.accessioned2019-10-01T08:58:29Z-
dc.date.available2019-10-01T08:58:29Z-
dc.date.issued2019-09-07-
dc.identifier.urihttp://hdl.handle.net/2003/38252-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20222-
dc.description.abstractLaser powder bed fusion (L-PBF) of metals enables the manufacturing of highly complex geometries which opens new application fields in the medical sector, especially with regard to personalized implants. In comparison to conventional manufacturing techniques, L-PBF causes different microstructures, and thus, new challenges arise. The main objective of this work is to investigate the influence of different manufacturing parameters of the L-PBF process on the microstructure, process-induced porosity, as well as corrosion fatigue properties of the magnesium alloy WE43 and as a reference on the titanium alloy Ti-6Al-4V. In particular, the investigated magnesium alloy WE43 showed a strong process parameter dependence in terms of porosity (size and distribution), microstructure, corrosion rates, and corrosion fatigue properties. Cyclic tests with increased test duration caused an especially high decrease in fatigue strength for magnesium alloy WE43. It can be demonstrated that, due to high process-induced surface roughness, which supports locally intensified corrosion, multiple crack initiation sites are present, which is one of the main reasons for the drastic decrease in fatigue strength.en
dc.language.isoende
dc.relation.ispartofseriesMaterials;12(18)-
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/-
dc.subjectAdditive manufacturingen
dc.subjectLaser powder bed fusion (L-PBF)en
dc.subjectMagnesium alloy WE43en
dc.subjectTitanium alloy Ti-6Al-4Ven
dc.subjectBiomaterialsen
dc.subjectCorrosionen
dc.subjectIn vitro fatigueen
dc.subject.ddc660-
dc.titleCorrosion and corrosion fatigue properties of additively manufactured magnesium alloy WE43 in comparison to titanium alloy Ti-6Al-4V in physiological environmenten
dc.typeTextde
dc.type.publicationtypearticlede
dc.subject.rswkRapid Prototyping <Fertigung>de
dc.subject.rswkSelective-Laser-Meltingde
dc.subject.rswkMagnesiumlegierungde
dc.subject.rswkTitanlegierungde
dc.subject.rswkBiomaterialde
dc.subject.rswkKorrosionde
dc.subject.rswkMaterialermüdungde
dcterms.accessRightsopen access-
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primaryidentifierdoi:10.3390/ma12182892de
eldorado.secondarypublication.primarycitationWegner, N.; Kotzem, D.; Wessarges, Y.; Emminghaus, N.; Hoff, C.; Tenkamp, J.; Hermsdorf, J.; Overmeyer, L.; Walther, F. Corrosion and Corrosion Fatigue Properties of Additively Manufactured Magnesium Alloy WE43 in Comparison to Titanium Alloy Ti-6Al-4V in Physiological Environment. Materials 2019, 12, 2892.de
Appears in Collections:Fachgebiet Werkstoffprüftechnik

Files in This Item:
File Description SizeFormat 
materials-12-02892.pdf83.8 MBAdobe PDFView/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons