Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaiser, Tobias-
dc.contributor.authorMenzel, Andreas-
dc.date.accessioned2021-03-19T07:00:33Z-
dc.date.available2021-03-19T07:00:33Z-
dc.date.issued2020-12-16-
dc.identifier.urihttp://hdl.handle.net/2003/40090-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-21967-
dc.description.abstractMotivated by experimental findings on deformation induced microcracks in thin metal films and by their influence on the effective macroscopic electrical conductivity, a computational multiscale formulation for electrical conductors is proposed in this contribution. In particular, averaging theorems for kinematic quantities and for their energetic duals are discussed, an extended version of the Hill–Mandel energy equivalence condition is proposed and suitable boundary conditions for the microscale problem are elaborated. The implementation of the proposed framework in a two-scale finite element environment is shown and representative boundary value problems are studied in two- and three-dimensional settings.en
dc.language.isoende
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.subjectFlexible electronic devicesen
dc.subjectElectro-mechanical couplingen
dc.subjectConductorsen
dc.subjectAnisotropic conductivityen
dc.subjectHeterogeneous microstructuresen
dc.subjectMultiscale modellingen
dc.subjectScale-bridgingen
dc.subject.ddc620-
dc.subject.ddc670-
dc.titleAn electro-mechanically coupled computational multiscale formulation for electrical conductorsen
dc.typeTextde
dc.type.publicationtypearticleen
dc.subject.rswkTransportables Gerätde
dc.subject.rswkElektrischer Leiterde
dc.subject.rswkMikrostrukturde
dc.subject.rswkMathematische Modellierungde
dc.subject.rswkMehrskalenanalysede
dc.subject.rswkWerkstoffprüfungde
dc.subject.rswkFinite-Elemente-Methodede
dcterms.accessRightsopen access-
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s00419-020-01837-6de
eldorado.secondarypublication.primarycitationKaiser, T., Menzel, A. An electro-mechanically coupled computational multiscale formulation for electrical conductors. Arch Appl Mech (2020).de
Appears in Collections:Institut für Mechanik

Files in This Item:
File Description SizeFormat 
Kaiser-Menzel2020_Article_AnElectro-mechanicallyCoupledC.pdf1.55 MBAdobe PDFView/Open


This item is protected by original copyright



This item is licensed under a Creative Commons License Creative Commons