Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Awd, Mustafa | - |
dc.contributor.author | Münstermann, Sebastian | - |
dc.contributor.author | Walther, Frank | - |
dc.date.accessioned | 2024-01-22T14:29:02Z | - |
dc.date.available | 2024-01-22T14:29:02Z | - |
dc.date.issued | 2022-08-25 | - |
dc.identifier.uri | http://hdl.handle.net/2003/42290 | - |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-24126 | - |
dc.description.abstract | The posterior statistical distributions of fatigue strength are determined using Bayesian inferential statistics and the Metropolis Monte Carlo method. This study explores how structural heterogeneity affects ultrahigh cycle fatigue strength in additive manufacturing. Monte Carlo methods and procedures may assist estimate fatigue strength posteriors and scatter. The acceptable probability in Metropolis Monte Carlo relies on the Markov chain's random microstructure state. In addition to commonly studied variables, the proportion of chemical composition was demonstrated to substantially impact fatigue strength if fatigue lifetime in crack propagation did not prevail due to high threshold internal notches. The study utilizes an algorithm typically used for quantum mechanics to solve the complicated multifactorial fatigue problem. The inputs and outputs are modified by fitting the microstructural heterogeneities into the Metropolis Monte Carlo algorithm. The main advantage here is applying a general-purpose nonphenomenological model that can be applied to multiple influencing factors without high numerical penalty. | en |
dc.language.iso | en | de |
dc.relation.ispartofseries | Fatigue & fracture of engineering materials & structures;45(11) | - |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | de |
dc.subject | Additive manufacturing | en |
dc.subject | Machine learning | en |
dc.subject | Markov chain | en |
dc.subject | Monte Carlo simulation | en |
dc.subject | Reinforcement learning | en |
dc.subject | Very high cycle fatigue | en |
dc.subject.ddc | 660 | - |
dc.title | Effect of microstructural heterogeneity on fatigue strength predicted by reinforcement machine learning | en |
dc.type | Text | de |
dc.type.publicationtype | Article | de |
dc.subject.rswk | Rapid Prototyping <Fertigung> | de |
dc.subject.rswk | Maschinelles Lernen | de |
dc.subject.rswk | Markov-Kette | de |
dc.subject.rswk | Monte-Carlo-Simulation | de |
dc.subject.rswk | Bestärkendes Lernen <Künstliche Intelligenz> | de |
dc.subject.rswk | Ermüdung bei sehr hohen Lastspielzahlen | de |
dcterms.accessRights | open access | - |
eldorado.secondarypublication | true | de |
eldorado.secondarypublication.primaryidentifier | https://doi.org/10.1111/ffe.13816 | de |
eldorado.secondarypublication.primarycitation | Awd M, Münstermann S, Walther F. Effect of microstructural heterogeneity on fatigue strength predicted by reinforcement machine learning. Fatigue Fract Eng Mater Struct. 2022; 45(11): 3267-3287. doi:10.1111/ffe.13816 | de |
Appears in Collections: | Fachgebiet Werkstoffprüftechnik |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Fatigue Fract Eng Mat Struct - 2022 - Awd - Effect of microstructural heterogeneity on fatigue strength predicted by.pdf | DNB | 19.73 MB | Adobe PDF | View/Open |
This item is protected by original copyright |
This item is licensed under a Creative Commons License