Full metadata record
DC FieldValueLanguage
dc.contributor.advisorChen, Jian-Jia-
dc.contributor.authorYayla, Mikail-
dc.date.accessioned2024-04-10T11:03:23Z-
dc.date.available2024-04-10T11:03:23Z-
dc.date.issued2024-
dc.identifier.urihttp://hdl.handle.net/2003/42431-
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-24267-
dc.description.abstractEdge Artificial Intelligence is progressively pervading all aspects of our life. However, to perform complex tasks, a massive amount of matrix multiplications needs to be computed. At the same time, the available hardware resources for computation are highly limited. The pressing need for efficiency serves as the motivation for this dissertation. In this dissertation, we propose a vision for highly-resource constrained future intelligent systems that are comprised of robust Binarized Neural Networks operating with approximate memory and approximate computing units, while being able to be trained on the edge.en
dc.language.isoende
dc.subjectEmbedded systemen
dc.subjectEdge AIen
dc.subjectMachine learningen
dc.subjectHW/SW codedesignen
dc.subjectNon-volatile memoryen
dc.subjectError toleranceen
dc.subjectEfficient trainingen
dc.subject.ddc004-
dc.titleA vision for edge AIen
dc.title.alternativerobust binarized neural networks on emerging resource-constrained hardwareen
dc.typeTextde
dc.contributor.refereeTeich, Jürgen-
dc.date.accepted2024-02-28-
dc.type.publicationtypePhDThesisde
dc.subject.rswkKünstliche Intelligenzde
dc.subject.rswkEingebettetes Systemde
dc.subject.rswkMaschinelles Lernende
dc.subject.rswkFehlertoleranzde
dcterms.accessRightsopen access-
eldorado.secondarypublicationfalsede
Appears in Collections:Entwurfsautomatisierung für Eingebettete Systeme

Files in This Item:
File Description SizeFormat 
Dissertation_Yayla.pdfDNB2.48 MBAdobe PDFView/Open


This item is protected by original copyright



This item is protected by original copyright rightsstatements.org