Authors: | Dette, Holger Melas, Viatcheslav B. Pepelyshev, Andrey |
Title: | Optimal designs for 3D shape analysis with spherical harmonic descriptors |
Language (ISO): | en |
Abstract: | We determine optimal designs for some regression models which are frequently used for describing 3D shapes. These models are based on a Fourier expansion of a function defined on the unit sphere in terms of spherical harmonic basis functions. In particular it is demonstrated that the uniform distribution on the sphere is optimal with respect to all Φp-criteria proposed by Kiefer (1974) and also optimal with respect to a criterion which maximizes a p-mean of the r smallest eigenvalues of the variance-covariance matrix. This criterion is related to principal component analysis, which is the common tool for analyzing this type of image data. Moreover, discrete designs on the sphere are derived, which yield the same information matrix in the spherical harmonic regression model as the uniform distribution and are therefore directly implementable in practice. It is demonstrated that the new designs are substantially more efficient than the commonly used designs in 3D-shape analysis. |
Subject Headings: | shape analysis spherical harmonic descriptors optimal designs quadrature formulas principal component analysis 3D-image data |
URI: | http://hdl.handle.net/2003/4896 http://dx.doi.org/10.17877/DE290R-6667 |
Issue Date: | 2004 |
Provenance: | Universitätsbibliothek Dortmund |
Appears in Collections: | Sonderforschungsbereich (SFB) 475 |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
25_04.pdf | DNB | 368.66 kB | Adobe PDF | View/Open |
tr25-04.ps | 1.6 MB | Postscript | View/Open |
This item is protected by original copyright |
If no CC-License is given, pleas contact the the creator, if you want to use thre resource other than only read it.