Authors: Fried, Roland
Gather, Ursula
Title: Methods and Algorithms for Robust Filtering
Language (ISO): en
Abstract: We discuss filtering procedures for robust extraction of a signal from noisy time series. Moving averages and running medians are standard methods for this, but they have shortcomings when large spikes (outliers) respectively trends occur. Modified trimmed means and linear median hybrid filters combine advantages of both approaches, but they do not completely overcome the difficulties. Improvements can be achieved by using robust regression methods, which work even in real time because of increased computational power and faster algorithms. Extending recent work we present filters for robust online signal extraction and discuss their merits for preserving trends, abrupt shifts and extremes and for the removal of spikes.
Subject Headings: signal extraction
drift
edge
outlier
update algorithm
URI: http://hdl.handle.net/2003/4915
http://dx.doi.org/10.17877/DE290R-6821
Issue Date: 2004
Publisher: Universitätsbibliothek Dortmund
Appears in Collections:Sonderforschungsbereich (SFB) 475

Files in This Item:
File Description SizeFormat 
44_04.pdfDNB122.6 kBAdobe PDFView/Open
44_04.ps278.08 kBPostscriptView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.