Authors: Brunnert, Marcus
Gilberg, Frank
Title: Parameter Estimation in Enzyme-Kinetics with Consideration of Heteroscedasticity and Low Dose Data
Language (ISO): en
Abstract: In this paper we propose a simulation study in order to discuss four statistical models dealing with the problem of parameter estimation in enzyme-kinetics. The pseudo-maximum-likelihood estimators for the transform-both-sides-model and the weighted TBS-model are compared with least-square-estimators of the classical nonlinear regression model and the linearized Eadie-Hofstee-plot. Due to heteroscedasticity of enzyme-kinetic data in low dose experiments the proposed estimators are investigated.
Subject Headings: heteroscedastic error variance
low dose data
Michaelis-Menten-kinetic
nonlinear regression model
pseudo-maximum-likelihood estimation
simulation study
URI: http://hdl.handle.net/2003/4941
http://dx.doi.org/10.17877/DE290R-6640
Issue Date: 1999
Publisher: Universitätsbibliothek Dortmund
Appears in Collections:Sonderforschungsbereich (SFB) 475

Files in This Item:
File Description SizeFormat 
99_49.pdfDNB107.48 kBAdobe PDFView/Open
tr49-99.ps761.07 kBPostscriptView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.