Authors: Sondhauss, Ursula
Weihs, Claus
Title: Dynamic Bayesian Networks for Classification of Business Cycles
Language (ISO): en
Abstract: We use Dynamic Bayesian networks to classify business cycle phases. We compare classiffiers generated by learning the Dynamic Bayesian network structure on different sets of admissible network structures. Included are sets of network structures of the Tree Augmented Naive Bayes (TAN) classifiers of Friedman, Geiger, and Goldszmidt (1997) adapted for dynamic domains. The performance of the developed classifiers on the given data was modest.
Issue Date: 1999
Provenance: Universitätsbibliothek Dortmund
Appears in Collections:Sonderforschungsbereich (SFB) 475

Files in This Item:
File Description SizeFormat 
99_17.pdfDNB292.65 kBAdobe PDFView/Open
tr17-99.ps950.16 kBPostscriptView/Open

This item is protected by original copyright

Items in Eldorado are protected by copyright, with all rights reserved, unless otherwise indicated.