Authors: Meyners, Michael
Qannari, El Mostafa
Title: Identifying assessor differences in weighting the underlying sensory dimensions
Language (ISO): en
Abstract: In a previous paper Kunert and Qannari (1999) discussed a simple alternative to Generalized Procrustes Analysis to analyze data derived from a sensory profiling study. After simple pretreatments of the individual data matrices, they propose to merge the data sets together and undergo Principal Components Analysis of the matrix thus formed. On the basis of two data sets, it was shown that the results slightly differ from those obtained by means of Generalized Procrustes Analysis. In this paper we give a mathematical justification to this approach by relating it to a statistical regression model. Furthermore, we obtain additional information from this method concerning the dimensions used by the assessors as well as the contribution of each assessor to the determination of these dimensions. This information may be useful to characterize the performance of the assessors and single out those assessors who downweight or overweight some dimensions. In particular, those assessors who overweight the last dimensions should arouse suspicion regarding their performance as, in general, the last dimensions in a principal components analysis are deemed to reflect random fluctuations.
URI: http://hdl.handle.net/2003/5074
http://dx.doi.org/10.17877/DE290R-15170
Issue Date: 2000
Publisher: Universitätsbibliothek Dortmund
Appears in Collections:Sonderforschungsbereich (SFB) 475

Files in This Item:
File Description SizeFormat 
2000_52.pdfDNB42.05 kBAdobe PDFView/Open
tr52-00.ps351.58 kBPostscriptView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.