Authors: Davidson, James
Sibbertsen, Philipp
Title: Generating Schemes for Long Memory Processes: Regimes, Aggregation and Linearity
Language (ISO): en
Abstract: This paper analyses a class of nonlinear time series models exhibiting long memory. These processes exhibit short memory fluctuations around a local mean (regime) which switches randomly such that the durations of the regimes follow a power law. We show that if a large number of independent copies of such a process are aggregated, the resulting processes are Gaussian, have a linear representation, and converge after normalisation to fractional Brownian motion. Two cases arise, a stationary case in which the partial sums of the process converge, and a nonstationary case in which the process itself converges, the Hurst coefficient falling in the ranges ( 1/2 , 1) and (0, 1/2 ) respectively. However, a non-aggregated regime process is shown to converge to a Levy motion with infinite variance, suitably normalised, emphasising the fact that time aggregation alone fails to yield a FCLT. We comment on the relevance of our results to the interpretation of the long memory phenomenon, and also report some simulations aimed to throw light on the problem of discriminating between the models in practice.
URI: http://hdl.handle.net/2003/5220
http://dx.doi.org/10.17877/DE290R-15128
Issue Date: 2002
Publisher: Universitätsbibliothek Dortmund
Appears in Collections:Sonderforschungsbereich (SFB) 475

Files in This Item:
File Description SizeFormat 
tr46-02.pdfDNB254.91 kBAdobe PDFView/Open


This item is protected by original copyright



All resources in the repository are protected by copyright.