Consistency for the negative binomial regression with fixed covariate

dc.contributor.authorWeißbach, Rafael
dc.contributor.authorRadloff, Lucas
dc.date.accessioned2018-10-31T13:29:33Z
dc.date.available2018-10-31T13:29:33Z
dc.date.issued2018
dc.description.abstractWe model an overdispersed count as a dependent measurement, by means of the Negative Binomial distribution. We consider quantitative regressors that are fixed by design. The expectation of the dependent variable is assumed to be a known function of a linear combination involving regressors and their coefficients. In the NB1-parametrization of the negative binomial distribution, the variance is a linear function of the expectation, inflated by the dispersion parameter, and not a generalized linear model. We apply a general result of Bradley and Gart (1962) to derive weak consistency and asymptotic normality of the maximum likelihood estimator for all parameters. To this end, we show (i) how to bound the logarithmic density by a function that is linear in the outcome of the dependent variable, independently of the parameter. Furthermore (ii) the positive definiteness of the matrix related to the Fisher information is shown with the Cauchy-Schwarz inequality.en
dc.identifier.urihttp://hdl.handle.net/2003/37352
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-19347
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;26/2018en
dc.subjectnegative binomial regressionen
dc.subjectasymptotic normalityen
dc.subjectweak consistencyen
dc.subjectfixed covariatesen
dc.subjectNB1-parametrizationen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.subject.rswkNegative Binomialverteilungde
dc.subject.rswkMaximum-Likelihood-Schätzungde
dc.titleConsistency for the negative binomial regression with fixed covariateen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_2618_Weißbach_Radloff.pdf
Size:
393.54 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: