Verfahren zur adaptiven Identifikation von Mittelspannungsteilnetzen durch den Einsatz des maschinellen Lernens

dc.contributor.advisorRehtanz, Christian
dc.contributor.authorPuhe, Frederik
dc.contributor.refereeZdrallek, Markus
dc.date.accepted2023-12-20
dc.date.accessioned2024-03-15T10:11:36Z
dc.date.available2024-03-15T10:11:36Z
dc.date.issued2023
dc.description.abstractIm Rahmen dieser Dissertation wird ein Verfahren zur Identifikation von Teilnetzen in der Mittelspannungsebene entwickelt. Die Besonderheit liegt vor allem in der adaptiven Implementierung und Erweiterung in Ortsnetzstationen durch den Einsatz von Virtualisierungslösungen und Algorithmen des maschinellen Lernens. Der Begriff Teilnetz beschreibt eine physikalisch vom Verbundsystem isolierte und von der Größe unbestimmte Versorgungsstruktur, welche aufgrund auftretender Störungen unbeabsichtigt weiter betrieben wird. Die Modellierung der Testumgebung und die darauf zugrunde liegende Bewertung der Funktionsweise des im Rahmen dieser Arbeit entwickelten Teilnetzidentifikationsverfahrens erfolgt anhand dynamischer Netzsimulationen in MATLAB Simulink© sowie durch eine Hardware-in-the-Loop Simulation unter Verwendung eines Echtzeitsimulators.de
dc.description.abstractIn this thesis, a subgrid identification procedure for medium voltage grids is developed. The main feature is the adaptive implementation and scaling in local substations by using virtualization solutions and machine learning algorithms. Subgrids describe supply structures that are physically isolated from the interconnected grid, unspecified in their size and continue to operate unintentionally due to disturbances. The modeling of the test environment and the evaluation of the functionality of the subgrid identification procedure is carried out by dynamic simulations in MATLAB Simulink© as well as by a Hardware-in-the-Loop simulation using a real-time simulator.de
dc.identifier.urihttp://hdl.handle.net/2003/42393
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-24229
dc.language.isodede
dc.subjectTeilnetzidentifikationde
dc.subjectVerteilnetzde
dc.subjectSmartGridsde
dc.subjectNetzschutzde
dc.subjectMaschinelles Lernende
dc.subject.ddc620
dc.subject.rswkNetzidentifikationde
dc.subject.rswkMittelspannungsnetzde
dc.subject.rswkStörungde
dc.subject.rswkMaschinelles Lernende
dc.subject.rswkSimulationde
dc.titleVerfahren zur adaptiven Identifikation von Mittelspannungsteilnetzen durch den Einsatz des maschinellen Lernensde
dc.typeTextde
dc.type.publicationtypePhDThesisde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dissertation_Puhe.pdf
Size:
2.72 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: