On large-scale probabilistic and statistical data analysis

dc.contributor.advisorSohler, Christian
dc.contributor.authorMunteanu, Alexander
dc.contributor.refereeIckstadt, Katja
dc.date.accepted2018-07-25
dc.date.accessioned2018-09-03T14:05:05Z
dc.date.available2018-09-03T14:05:05Z
dc.date.issued2018
dc.description.abstractIn this manuscript we develop and apply modern algorithmic data reduction techniques to tackle scalability issues and enable statistical data analysis of massive data sets. Our algorithms follow a general scheme, where a reduction technique is applied to the large-scale data to obtain a small summary of sublinear size to which a classical algorithm is applied. The techniques for obtaining these summaries depend on the problem that we want to solve. The size of the summaries is usually parametrized by an approximation parameter, expressing the trade-off between efficiency and accuracy. In some cases the data can be reduced to a size that has no or only negligible dependency on the initial number of data items. However, for other problems it turns out that sublinear summaries do not exist in the worst case. In such situations, we exploit statistical or geometric relaxations to obtain useful sublinear summaries under certain mildness assumptions. We present, in particular, the data reduction methods called coresets and subspace embeddings, and several algorithmic techniques to construct these via random projections and sampling.en
dc.identifier.urihttp://hdl.handle.net/2003/37116
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-19112
dc.language.isoende
dc.subjectData reductionen
dc.subjectRegressionen
dc.subjectRandom projectionsen
dc.subjectCoresetsen
dc.subject.ddc004
dc.subject.rswkDatenkompressionde
dc.subject.rswkRegressionsanalysede
dc.subject.rswkDimensionsreduktionde
dc.titleOn large-scale probabilistic and statistical data analysisen
dc.typeTextde
dc.type.publicationtypedoctoralThesisde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dissertation_Munteanu.pdf
Size:
917.29 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: