Detecting structural breaks in eigensystems of functional time series

dc.contributor.authorDette, Holger
dc.contributor.authorKutta, Tim
dc.date.accessioned2019-11-19T12:07:46Z
dc.date.available2019-11-19T12:07:46Z
dc.date.issued2019
dc.description.abstractDetecting structural changes in functional data is a prominent topic in statistical literature. However not all trends in the data are important in applications, but only those of large enough in uence. In this paper we address the problem of identifying relevant changes in the eigenfunctions and eigenvalues of covariance kernels of L^2[0; 1]- valued time series. By self-normalization techniques we derive pivotal, asymptotically consistent tests for relevant changes in these characteristics of the second order structure and investigate their finite sample properties in a simulation study. The applicability of our approach is demonstrated analyzing German annual temperature data.en
dc.identifier.urihttp://hdl.handle.net/2003/38386
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-20319
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;27/2019
dc.subjectfunctional time seriesen
dc.subjectself-normalizationen
dc.subjecteigenvaluesen
dc.subjecteigenfunctionsen
dc.subjectrelevant changesen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleDetecting structural breaks in eigensystems of functional time seriesen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_2719_SFB823_ Dette_Kutta.pdf
Size:
706.02 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: