A family of non-restricted D=11 geometric supersymmetries
dc.contributor.author | Klinker, Frank | |
dc.date.accessioned | 2014-07-14T08:57:01Z | |
dc.date.available | 2014-07-14T08:57:01Z | |
dc.date.issued | 2014-07-14 | |
dc.description.abstract | We construct a two parameter family of irreducible, eleven-dimensional, indecomposable, non-flat Cahen-Wallach spaces with non-restricted geometric supersymmetry of fraction ν = 3/4. Its compactified moduli space can be parametrized by a compact interval with two points corresponding to two non-isometric, decomposable spaces. These singular spaces are associated to a restricted N = 4 geometric supersymmetry with ν = 1/2 in dimension six and a non-restricted N = 2 geometric supersymmetry with ν = 3/4 in dimension nine. | en |
dc.identifier.uri | http://hdl.handle.net/2003/33487 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-6850 | |
dc.language.iso | en | |
dc.subject | differential geometry | en |
dc.subject | geometric superalgebra | en |
dc.subject | geometric supersymmetry | en |
dc.subject.ddc | 610 | |
dc.title | A family of non-restricted D=11 geometric supersymmetries | en |
dc.type | Text | de |
dc.type.publicationtype | preprint | en |
dcterms.accessRights | open access |