Inhomogeneous Helmholtz equations in wave guides – existence and uniqueness results with energy methods

Abstract

The Helmholtz equation −∇⋅(a∇u)−ω2u=f is considered in an unbounded wave guide Ω:=R×S⊂Rd , S⊂Rd−1 a bounded domain. The coefficient a is strictly elliptic and either periodic in the unbounded direction x1∈R or periodic outside a compact subset; in the latter case, two different periodic media can be used in the two unbounded directions. For non-singular frequencies ω , we show the existence of a solution u. While previous proofs of such results were based on analyticity arguments within operator theory, here, only energy methods are used.

Description

Table of contents

Keywords

Helmholtz equation, Wave guide, Periodic media, Fredholm alternative

Citation