A central limit theorem for random walks on the dual of a compact Grassmannian

dc.contributor.authorRösler, Margit
dc.contributor.authorVoit, Michael
dc.date.accessioned2014-12-02T15:52:14Z
dc.date.available2014-12-02T15:52:14Z
dc.date.issued2014-12
dc.description.abstractWe consider compact Grassmann manifolds G/K over the real, complex or quaternionic numbers whose spherical functions are Heckman-Opdam polynomials of type BC. From an explicit integral representation of these polynomials we deduce a sharp Mehler-Heine formula, that is an approximation of the Heckman-Opdam polynomials in terms of Bessel functions, with a precise estimate on the error term. This result is used to derive a central limit theorem for random walks on the semi-lattice parametrizing the dual of G/K, which are constructed by successive decompositions of tensor powers of spherical representations of G. The limit is the distribution of a Laguerre ensemble in random matrix theory. Most results of this paper are established for a larger continuous set of multiplicity parameters beyond the group cases.en
dc.identifier.urihttp://hdl.handle.net/2003/33759
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-6708
dc.language.isoen
dc.relation.ispartofseriesPreprint; 2014-07en
dc.subjectMehler-Heine formulaen
dc.subjectHeckman-Opdam polynomialsen
dc.subjectGrassmann manifoldsen
dc.subjectspherical functionsen
dc.subjectcentral limit theoremen
dc.subjectasymptotic representation theoryen
dc.subject.ddc610
dc.titleA central limit theorem for random walks on the dual of a compact Grassmannianen
dc.typeTextde
dc.type.publicationtypepreprinten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Preprint 2014-07.pdf
Size:
331.14 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
952 B
Format:
Item-specific license agreed upon to submission
Description: