On Takeover Times in Spatially Structured Populations : Array and Ring

dc.contributor.authorRudolph, Günterde
dc.date.accessioned2004-12-07T08:20:11Z
dc.date.available2004-12-07T08:20:11Z
dc.date.created1999de
dc.date.issued2001-10-16de
dc.description.abstractThe takeover time is the expected number of iterations of some selection method until a population consists entirely of copies of the best individual under the assumption that only one best individual is contained in the initial population. This quantity may be used to assess and compare the selection pressures of selection methods used in evolutionary algorithms. Here, the notion is generalized from spatially unstructured to structured populations. Lower bounds are derived for arbitrary connected neighborhood structures, lower and upper bounds for array-like structures, and an exact closed form expression if the neighborhood structure is a ring.en
dc.format.extent64505 bytes
dc.format.extent77291 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/5379
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15056
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 74de
dc.subject.ddc004de
dc.titleOn Takeover Times in Spatially Structured Populations : Array and Ringen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
ci74.pdf
Size:
62.99 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
ci74.ps
Size:
75.48 KB
Format:
Postscript Files