A Comparison of Approximation Algorithms for the MaxCut-Problem
dc.contributor.author | Dolezal, Oliver | de |
dc.contributor.author | Hofmeister, Thomas | de |
dc.contributor.author | Lefmann, Hanno | de |
dc.date.accessioned | 2004-12-07T08:19:57Z | |
dc.date.available | 2004-12-07T08:19:57Z | |
dc.date.created | 1999 | de |
dc.date.issued | 2001-10-16 | de |
dc.description.abstract | In this paper we compare, from a practical point of view, approximation algorithms for the problem MaxCut . For this problem, we are given an undirected graph G = (V;E) with vertex set V and edge set E, and we are looking for a partition V = V1 [ V2 with V1 \ V2 = 0 of the vertex set which maximizes the number of edges e 2 E which have one endpoint in V1 and the other in V2 . The investigated algorithms include semidefinite programming, a random strategy, genetic algorithms, two combinatorial algorithms and a divide-and-conquer strategy. | en |
dc.format.extent | 305251 bytes | |
dc.format.extent | 400909 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/postscript | |
dc.identifier.uri | http://hdl.handle.net/2003/5366 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-5013 | |
dc.language.iso | en | de |
dc.publisher | Universität Dortmund | de |
dc.relation.ispartofseries | Reihe Computational Intelligence ; 57 | de |
dc.subject.ddc | 004 | de |
dc.title | A Comparison of Approximation Algorithms for the MaxCut-Problem | en |
dc.type | Text | de |
dc.type.publicationtype | report | |
dcterms.accessRights | open access |