Optimal designs for regression models with a constant coefficient of variation

dc.contributor.authorDette, Holger
dc.contributor.authorMüller, Werner G.
dc.date.accessioned2012-06-04T11:45:56Z
dc.date.available2012-06-04T11:45:56Z
dc.date.issued2012-06-04
dc.description.abstractIn this paper we consider the problem of constructing optimal designs for models with a constant coefficient of variation. We explore the special structure of the information matrix in these models and derive a characterization of optimal designs in the sense of Kiefer and Wolfowitz (1960). Besides locally optimal designs, Bayesian and standardized minimax optimal designs are also considered. Particular attention is spent on the problem of constructing D-optimal designs. The results are illustrated in several examples where optimal designs are calculated analytically and numerically.en
dc.identifier.urihttp://hdl.handle.net/2003/29466
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-3349
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;20/2012en
dc.subjectconstant coefficient of variationen
dc.subjectheteroscedasticityen
dc.subjectoptimal designen
dc.subjectpolynomial regressionen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleOptimal designs for regression models with a constant coefficient of variationen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_2012_SFB823_Dette_Müller.pdf
Size:
312.1 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.02 KB
Format:
Item-specific license agreed upon to submission
Description: