Billiards in ideal hyperbolic polygons

dc.contributor.authorCastle, Simon
dc.contributor.authorPeyerimhoff, Norbert
dc.contributor.authorSiburg, Karl F.
dc.date.accessioned2009-05-12T15:08:12Z
dc.date.available2009-05-12T15:08:12Z
dc.date.issued2009-05-12T15:08:12Z
dc.description.abstractWe consider billiard trajectories in ideal hyperbolic polygons and present a conjecture about the minimality of the average length of cyclically related billiard trajectories in regular hyperbolic polygons. We prove this conjecture in particular cases, using geometric and algebraic methods from hyperbolic geometry.en
dc.identifier.urihttp://hdl.handle.net/2003/26110
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-6529
dc.language.isoen
dc.relation.ispartofseriesPreprints der Fakultät für Mathematik ; 2009-06de
dc.subject.ddc610
dc.titleBilliards in ideal hyperbolic polygonsen
dc.typeTextde
dc.type.publicationtypepreprinten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematicalPreprint09-06.pdf
Size:
423.32 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.03 KB
Format:
Item-specific license agreed upon to submission
Description: