Optimal vs. Classical Linear Dimension Reduction

dc.contributor.authorRöhl, Michael C.de
dc.contributor.authorWeihs, Clausde
dc.date.accessioned2004-12-06T18:38:33Z
dc.date.available2004-12-06T18:38:33Z
dc.date.issued1998de
dc.description.abstractWe describe a computer intensive method for linear dimension reduction which minimizes the classification error directly. Simulated annealing (Bohachevsky et al. (1986)) is used to solve this problem. The classification error is determined by an exact integration. We avoid distance or scatter measures which are only surrogates to circumvent the classification error. Simulations (in two dimensions) and analytical approximations demonstrate the superiority of optimal classification opposite to the classical procedures. We compare our procedure to the well-known canonical discriminant analysis (homoscedastic case) as described in Mc Lachlan (1992) and to a method by Young et al. (1987) for the heteroscedastic case. Special emphasis is put on the case when the distance based methods collapse. The computer intensive algorithm always achieves minimal classification error.en
dc.format.extent248607 bytes
dc.format.extent308298 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4854
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5423
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subject.ddc310de
dc.titleOptimal vs. Classical Linear Dimension Reductionen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
98_12.pdf
Size:
242.78 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr12-98.ps
Size:
301.07 KB
Format:
Postscript Files