Multiscale inference for multivariate deconvolution

dc.contributor.authorEckle, Konstantin
dc.contributor.authorBissantz, Nicolai
dc.contributor.authorDette, Holger
dc.date.accessioned2016-11-24T15:30:35Z
dc.date.available2016-11-24T15:30:35Z
dc.date.issued2016
dc.description.abstractIn this paper we provide new methodology for inference of the geometric features of a multivariate density in deconvolution. Our approach is based on multiscale tests to detect significant directional derivatives of the unknown density at arbitrary points in arbitrary directions. The multiscale method is used to identify regions of monotonicity and to construct a general procedure for the detection of modes of the multivariate density. Moreover, as an important application a significance test for the presence of a local maximum at a pre-specified point is proposed. The performance of the new methods is investigated from a theoretical point of view and the finite sample properties are illustrated by means of a small simulation study.en
dc.identifier.urihttp://hdl.handle.net/2003/35626
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-17667
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;79, 2016en
dc.subjectdeconvolutionen
dc.subjectGaussian approximationen
dc.subjectmultiple testsen
dc.subjectmultivariate densityen
dc.subjectmodesen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleMultiscale inference for multivariate deconvolutionen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_7916_SFB823_Eckle_Bissantz_Dette.pdf
Size:
1.88 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: