Optimal Sequential Kernel Detection for Dependent Processes

dc.contributor.authorSteland, Ansgarde
dc.date.accessioned2004-12-06T18:41:17Z
dc.date.available2004-12-06T18:41:17Z
dc.date.issued2003de
dc.description.abstractIn many applications one is interested to detect certain (known) patterns in the mean of a process with smallest delay. Using an asymptotic framework which allows to capture that feature, we study a class of appropriate sequential nonparametric kernel procedures under local nonparametric alternatives. We prove a new theorem on the convergence of the normed delay of the associated sequential detection procedure which holds for dependent time series under a weak mixing condition. The result suggests a simple procedure to select a kernel from a finite set of candidate kernels, and therefore may also be of interest from a practical point of view. Further, we provide two new theorems about the existence and an explicit representation of optimal kernels minimizing the asymptotic normed delay. The results are illustrated by some examples.en
dc.format.extent194542 bytes
dc.format.extent393096 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4989
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5528
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectenzyme kineticsen
dc.subjectfinancial econometricsen
dc.subjectnonparametric regressionen
dc.subjectstatistical geneticsen
dc.subjectquality controlen
dc.subject.ddc310de
dc.titleOptimal Sequential Kernel Detection for Dependent Processesen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
27_03.pdf
Size:
189.98 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr27-03.ps
Size:
383.88 KB
Format:
Postscript Files