Bridge estimators and the adaptive Lasso under heteroscedasticity

dc.contributor.authorDette, Holger
dc.contributor.authorWagener, Jens
dc.date.accessioned2011-07-04T12:10:14Z
dc.date.available2011-07-04T12:10:14Z
dc.date.issued2011-07-04
dc.description.abstractIn this paper we investigate penalized least squares methods in linear regression models with heteroscedastic error structure. It is demonstrated that the basic properties with respect to model selection and parameter estimation of bridge estimators, Lasso and adaptive Lasso do not change if the assumption of homoscedasticity is violated. However, these estimators do not have oracle properties in the sense of Fan and Li (2001). In order to address this problem we introduce weighted penalized least squares methods and demonstrate their advantages by asymptotic theory and by means of a simulation study.en
dc.identifier.urihttp://hdl.handle.net/2003/28898
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-1629
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;20/2011
dc.subjectadaptive Lassoen
dc.subjectasymptotic normalityen
dc.subjectbridge estimatorsen
dc.subjectconservative model selectionen
dc.subjectheteroscedasticityen
dc.subjectLassoen
dc.subjectoracle propertyen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleBridge estimators and the adaptive Lasso under heteroscedasticityen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_2011_SFB823_Wagener_Dette.pdf
Size:
290.69 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1018 B
Format:
Item-specific license agreed upon to submission
Description: