Algorithms for regression and classification

dc.contributor.advisorJansen, Thomas
dc.contributor.authorNunkesser, Robin
dc.contributor.refereeFried, Roland
dc.date.accepted2009-02-24
dc.date.accessioned2009-03-12T10:57:58Z
dc.date.available2009-03-12T10:57:58Z
dc.date.issued2009-03-12T10:57:58Z
dc.description.abstractRegression and classification are statistical techniques that may be used to extract rules and patterns out of data sets. Analyzing the involved algorithms comprises interdisciplinary research that offers interesting problems for statisticians and computer scientists alike. The focus of this thesis is on robust regression and classification in genetic association studies. In the context of robust regression, new exact algorithms and results for robust online scale estimation with the estimators Qn and Sn and for robust linear regression in the plane with the estimator least quartile difference (LQD) are presented. Additionally, an evolutionary computation algorithm for robust regression with different estimators in higher dimensions is devised. These estimators include the widely used least median of squares (LMS) and least trimmed squares (LTS). For classification in genetic association studies, this thesis describes a Genetic Programming algorithm that outpeforms the standard approaches on the considered data sets. It is able to identify interesting genetic factors not found before in a data set on sporadic breast cancer and to handle larger data sets than the compared methods. In addition, it is extendible to further application fields.en
dc.identifier.urihttp://hdl.handle.net/2003/26047
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-957
dc.identifier.urnurn:nbn:de:hbz:290-2003/26047-2
dc.language.isoende
dc.subjectComputational statisticsen
dc.subjectRobust regressionen
dc.subjectAssociation studiesen
dc.subject.ddc004
dc.titleAlgorithms for regression and classificationen
dc.title.alternativerobust regression and genetic association studiesen
dc.typeTextde
dc.type.publicationtypedoctoralThesisde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Dissertation Nunkesser bw.pdf
Size:
8.88 MB
Format:
Adobe Portable Document Format
Description:
black-and-white
Loading...
Thumbnail Image
Name:
NunkesserDissertation.pdf
Size:
9.01 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.95 KB
Format:
Item-specific license agreed upon to submission
Description: