On Robustness Properties of Convex Risk Minimization Methods for Pattern Recognition

dc.contributor.authorChristmann, Andreasde
dc.contributor.authorSteinwart, Ingode
dc.date.accessioned2004-12-06T18:40:59Z
dc.date.available2004-12-06T18:40:59Z
dc.date.issued2003de
dc.description.abstractThe paper brings together methods from two disciplines: machine learning theory and robust statistics. Robustness properties of machine learning methods based on convex risk minimization are investigated for the problem of pattern recognition. Assumptions are given for the existence of the influence function of the classifiers and for bounds of the influence function. Kernel logistic regression, support vector machines, least squares and the AdaBoost loss function are treated as special cases. A sensitivity analysis of the support vector machine is given.en
dc.format.extent1156797 bytes
dc.format.extent710487 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4977
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15035
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectAdaBoost loss functionen
dc.subjectinfluence functionen
dc.subjectkernel logistic regressionen
dc.subjectrobustnessen
dc.subjectsensitivity curveen
dc.subjectstatistical learningen
dc.subjectsupport vector machineen
dc.subjecttotal variationen
dc.subject.ddc310de
dc.titleOn Robustness Properties of Convex Risk Minimization Methods for Pattern Recognitionen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
15_03.pdf
Size:
693.83 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr15-03.ps
Size:
1.1 MB
Format:
Postscript Files