Multiscale inference for multivariate deconvolution

dc.contributor.authorEckle, Konstantin
dc.contributor.authorBissantz, Nicolai
dc.contributor.authorDette, Holger
dc.date.accessioned2016-11-03T13:40:17Z
dc.date.available2016-11-03T13:40:17Z
dc.date.issued2016
dc.description.abstractWe propose multiscale tests for deconvolution in order to detect geometric features of an unknown multivariate density. Our approach uses simultaneous tests on all scales for the monotonicity of the density at arbitrary points in arbitrary directions. We consider the situation of polynomial decay of the Fourier transform of the error density in the de- convolution model (moderately ill-posed). We develop multiscale methods for identifying regions of monotonicity and a general procedure to detect the modes of a multivariate density. The theoretical results are illustrated by means of a simulation study.en
dc.identifier.urihttp://hdl.handle.net/2003/35310
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-17353
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;62, 2016en
dc.subjectmultiple testsen
dc.subjectX-ray astronomyen
dc.subjectmultivariate densityen
dc.subjectmodesen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleMultiscale inference for multivariate deconvolutionen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_6216_SFB823_Eckle_Bissantz_Dette.pdf
Size:
1.85 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: