Locally stationary multiplicative volatility modelling

dc.contributor.authorWalsh, Christopher
dc.contributor.authorVogt, Michael
dc.date.accessioned2021-05-21T15:27:55Z
dc.date.available2021-05-21T15:27:55Z
dc.date.issued2021
dc.description.abstractIn this paper, we study a semiparametric multiplicative volatility model, which splits up into a nonparametric part and a parametric GARCH component. The nonparametric part is modelled as a product of a deterministic time trend com- ponent and of further components that depend on stochastic regressors. We propose a two-step procedure to estimate the model. To estimate the nonpara- metric components, we transform the model in order to apply the backfitting procedure used in Vogt and Walsh (2019). The GARCH parameters are esti- mated in a second step via quasi maximum likelihood. We show consistency and asymptotic normality of our estimators. Our results are obtained using mixing properties and local stationarity. We illustrate our method using finan- cial data. Finally, a small simulation study illustrates a substantial bias in the GARCH parameter estimates when omitting the stochastic regressors.en
dc.identifier.urihttp://hdl.handle.net/2003/40191
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-22063
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;11/2021en
dc.subjectsmooth backfittingen
dc.subjectGARCHen
dc.subjectmultiplicative volatilityen
dc.subjectlocal stationarityen
dc.subjectsemiparametricen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleLocally stationary multiplicative volatility modellingen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_1121_SFB823_Walsh_Vogt.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: