Dynamic Bayesian Networks for Classification of Business Cycles

dc.contributor.authorSondhauss, Ursulade
dc.contributor.authorWeihs, Clausde
dc.date.accessioned2004-12-06T18:40:24Z
dc.date.available2004-12-06T18:40:24Z
dc.date.issued1999de
dc.description.abstractWe use Dynamic Bayesian networks to classify business cycle phases. We compare classiffiers generated by learning the Dynamic Bayesian network structure on different sets of admissible network structures. Included are sets of network structures of the Tree Augmented Naive Bayes (TAN) classifiers of Friedman, Geiger, and Goldszmidt (1997) adapted for dynamic domains. The performance of the developed classifiers on the given data was modest.en
dc.format.extent299673 bytes
dc.format.extent972962 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4953
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15091
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subject.ddc310de
dc.titleDynamic Bayesian Networks for Classification of Business Cyclesen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
99_17.pdf
Size:
292.65 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr17-99.ps
Size:
950.16 KB
Format:
Postscript Files