Accurate and (almost) tuning parameter free inference in cointegrating regressions

dc.contributor.authorReichold, Karsten
dc.contributor.authorJentsch, Carsten
dc.date.accessioned2021-01-04T07:47:00Z
dc.date.available2021-01-04T07:47:00Z
dc.date.issued2020
dc.description.abstractTuning parameter choices complicate statistical inference in cointegrating regressions and affect finite sample distributions of test statistics. As commonly used asymptotic theory fails to capture these effects, tests often suffer from severe size distortions. We propose a novel self-normalized test statistic for general linear hypotheses, which avoids the choice of tuning parameters. Its limiting null distributions is nonstandard, but simulating asymptotically valid critical values is straightforward. To further improve the performance of the test in small to medium samples, we employ the vector autoregressive sieve bootstrap to construct critical values. To show its consistency, we establish a bootstrap invariance principle result under conditions that go beyond the assumptions commonly imposed in the literature. Simulation results demonstrate that our new test outperforms competing approaches, as it has good power properties and is considerably less prone to size distortions.de
dc.identifier.urihttp://hdl.handle.net/2003/39964
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-21854
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;33/2020
dc.subjectbootstrap invariance principleen
dc.subjectvector autoregressive sieve bootstrapen
dc.subjectself-normalizationen
dc.subjectinferenceen
dc.subjectIM-OLSen
dc.subjectcointegrationen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.subject.rswkBootstrap-Statistikde
dc.subject.rswkInferenzstatistikde
dc.subject.rswkKointegrationde
dc.titleAccurate and (almost) tuning parameter free inference in cointegrating regressionsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access
eldorado.secondarypublicationfalsede

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_3320_SFB823_Reichold_Jentsch.pdf
Size:
729.71 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: