Reconstruction of Physical Correlations Using Symbolic Regression
dc.contributor.author | Stautner, Stautner | de |
dc.contributor.author | Weinert, Klaus | de |
dc.date.accessioned | 2004-12-07T08:20:57Z | |
dc.date.available | 2004-12-07T08:20:57Z | |
dc.date.created | 2001 | de |
dc.date.issued | 2002-04-05 | de |
dc.description.abstract | Modeling the particle ow mechanisms in orthogonal cutting of turning processes is a vital task in mechanical engineering. This paper presents a new approach that differs from techniques like finite element analyzes (FEA) or molecular dynamics (MD). Using symbolic regression, a genetic programming system evolves mathematical formulae that describe the trajectories of single particles of steel recorded during the turning process by a high-speed camera. | en |
dc.format.extent | 1551752 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.uri | http://hdl.handle.net/2003/5415 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-15286 | |
dc.language.iso | en | de |
dc.publisher | Universität Dortmund | de |
dc.relation.ispartofseries | Reihe Computational Intelligence ; 116 | de |
dc.subject.ddc | 004 | de |
dc.title | Reconstruction of Physical Correlations Using Symbolic Regression | en |
dc.type | Text | de |
dc.type.publicationtype | report | |
dcterms.accessRights | open access |
Files
Original bundle
1 - 1 of 1