Reconstruction of Physical Correlations Using Symbolic Regression

dc.contributor.authorStautner, Stautnerde
dc.contributor.authorWeinert, Klausde
dc.date.accessioned2004-12-07T08:20:57Z
dc.date.available2004-12-07T08:20:57Z
dc.date.created2001de
dc.date.issued2002-04-05de
dc.description.abstractModeling the particle ow mechanisms in orthogonal cutting of turning processes is a vital task in mechanical engineering. This paper presents a new approach that differs from techniques like finite element analyzes (FEA) or molecular dynamics (MD). Using symbolic regression, a genetic programming system evolves mathematical formulae that describe the trajectories of single particles of steel recorded during the turning process by a high-speed camera.en
dc.format.extent1551752 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://hdl.handle.net/2003/5415
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-15286
dc.language.isoende
dc.publisherUniversität Dortmundde
dc.relation.ispartofseriesReihe Computational Intelligence ; 116de
dc.subject.ddc004de
dc.titleReconstruction of Physical Correlations Using Symbolic Regressionen
dc.typeTextde
dc.type.publicationtypereport
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
116.pdf
Size:
1.48 MB
Format:
Adobe Portable Document Format
Description:
DNB