Generalized Becker-Döring Equations Modeling the Time Evolution of a Process of Preferential Attachment with Fitness

dc.contributor.authorGuias, Flavius
dc.date.accessioned2008-04-30T10:50:30Z
dc.date.available2008-04-30T10:50:30Z
dc.date.issued2008-04-30T10:50:30Z
dc.description.abstractWe introduce an infinite system of equations modeling the time evolution of the growth process of a network. The nodes are characterized by their degree k E N and a fitness parameter f E [0, h]. Every new node which emerges becomes a fitness f' according to a given distribution P and attaches to an existing node with fitness f and degree k at rate fA_k, where A_k are positive coefficients, growing sublinearly in k. If the parameter f takes only one value, the dynamics of this process can be described by a variant of the Becker-Döring equations, where the growth of the size of clusters of size k occurs only with increment 1. In contrast to the established Becker-Döring equations, the system considered here is nonconservative, since mass (i.e. links) is continuously added. Nevertheless, it has the property of linearity, which is a natural consequence of the process which is being modeled. The purpose of this paper is to construct a solution of the system based on a stochastic approximation algorithm, which allows also a numerical simulation in order to get insight into its qualitative behaviour. In particular we show analytically and numerically the property of Bose-Einstein condensation, which was observed in the literature on random graphs.en
dc.identifier.urihttp://hdl.handle.net/2003/25235
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-89
dc.language.isoende
dc.relation.ispartofseriesMathematical Preprints;2008-06en
dc.subject.ddc510
dc.titleGeneralized Becker-Döring Equations Modeling the Time Evolution of a Process of Preferential Attachment with Fitnessen
dc.typeTextde
dc.type.publicationtypepreprintde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
mathematicalPreprint06.pdf
Size:
402.61 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.03 KB
Format:
Item-specific license agreed upon to submission
Description: