SEMIFAR models

dc.contributor.authorBeran, Jande
dc.contributor.authorFeng, Yuanhuade
dc.contributor.authorOcker, Dirkde
dc.date.accessioned2004-12-06T18:39:40Z
dc.date.available2004-12-06T18:39:40Z
dc.date.issued1999de
dc.description.abstractRecent results on so-called SEMIFAR models introduced by Beran (1997) are discussed. The nonparametric deterministic trend is estimated by a kernel method. The differencing- and fractional differencing parameters as well as the autoregressive coefficients are estimated by an approximate maximum likelihood approach. A data-driven algorithm for estimating the whole model is proposed based on the iterative plug-in idea for selecting bandwidth in nonparametric regression with long-memory. Prediction for SEMIFAR models is also discussed briefly. Two examples illustrate the potential usefulness of these models in practice.en
dc.format.extent237934 bytes
dc.format.extent580150 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4919
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-6932
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectbandwidthen
dc.subjectBICde
dc.subjectdifference stationarityen
dc.subjectdifferencingen
dc.subjectforecastingen
dc.subjectfractional ARIMAen
dc.subjectkernel estimationen
dc.subjectlong-range dependenceen
dc.subjectsemiparametric modelsen
dc.subjecttrenden
dc.subject.ddc310de
dc.titleSEMIFAR modelsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
99_03.pdf
Size:
232.36 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr03-99.ps
Size:
566.55 KB
Format:
Postscript Files