Regularization parameter selection in indirect regression by residual based bootstrap

dc.contributor.authorBissantz, Nicolai
dc.contributor.authorChown, Justin
dc.contributor.authorDette, Holger
dc.date.accessioned2016-10-28T09:00:10Z
dc.date.available2016-10-28T09:00:10Z
dc.date.issued2016
dc.description.abstractResidual-based analysis is generally considered a cornerstone of statistical methodology. For a special case of indirect regression, we investigate the residual-based empirical distribution function and provide a uniform expansion of this estimator, which is also shown to be asymptotically most precise. This investigation naturally leads to a completely data-driven technique for selecting a regularization parameter used in our indirect regression function estimator. The resulting methodology is based on a smooth bootstrap of the model residuals. A simulation study demonstrates the effectiveness of our approach.de
dc.identifier.urihttp://hdl.handle.net/2003/35302
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-17345
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB823;56, 2016
dc.subjectbandwidth selectionde
dc.subjectsmooth bootstrapde
dc.subjectresidual-based empirical distribution functionde
dc.subjectregularizationde
dc.subjectindirect nonparametric regressionde
dc.subjectdeconvolution function estimatorde
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.subject.rswkNichtparametrische Regressionde
dc.subject.rswkBootstrap-Statistikde
dc.titleRegularization parameter selection in indirect regression by residual based bootstrapde
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_5616_SFB823_Bissantz_Chown_Dette.pdf
Size:
433.23 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.12 KB
Format:
Item-specific license agreed upon to submission
Description: