Laplace contour integrals and linear differential equations

dc.contributor.authorSteinmetz, Norbert
dc.date.accessioned2022-03-07T12:48:33Z
dc.date.available2022-03-07T12:48:33Z
dc.date.issued2021-07-17
dc.description.abstractThe purpose of this paper is to determine the main properties of Laplace contour integrals Λ(z)=12πi∫Cϕ(t)e−ztdt that solve linear differential equations L[w](z):=w(n)+∑j=0n−1(aj+bjz)w(j)=0. This concerns, in particular, the order of growth, asymptotic expansions, the Phragmén–Lindelöf indicator, the distribution of zeros, the existence of sub-normal and polynomial solutions, and the corresponding Nevanlinna functions.en
dc.identifier.urihttp://hdl.handle.net/2003/40769
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-22626
dc.language.isoende
dc.relation.ispartofseriesComputational methods and function theory;Vol. 21. 2021, pp 565–585
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectLinear differential equationen
dc.subjectLaplace contour integralen
dc.subjectAsymptotic expansionen
dc.subjectOrder of growthen
dc.subjectPhragmén–Lindelöf indicatoren
dc.subjectSub-normal solutionen
dc.subjectFunction of complete regular growthen
dc.subjectDistribution of zerosen
dc.subject.ddc520
dc.titleLaplace contour integrals and linear differential equationsde
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primarycitationComputational methods and function theory. Vol. 21. 2021, pp 565–585en
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s40315-021-00397-2de

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Steinmetz2021_Article_LaplaceContourIntegralsAndLine.pdf
Size:
374.9 KB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: