Laplace contour integrals and linear differential equations
dc.contributor.author | Steinmetz, Norbert | |
dc.date.accessioned | 2022-03-07T12:48:33Z | |
dc.date.available | 2022-03-07T12:48:33Z | |
dc.date.issued | 2021-07-17 | |
dc.description.abstract | The purpose of this paper is to determine the main properties of Laplace contour integrals Λ(z)=12πi∫Cϕ(t)e−ztdt that solve linear differential equations L[w](z):=w(n)+∑j=0n−1(aj+bjz)w(j)=0. This concerns, in particular, the order of growth, asymptotic expansions, the Phragmén–Lindelöf indicator, the distribution of zeros, the existence of sub-normal and polynomial solutions, and the corresponding Nevanlinna functions. | en |
dc.identifier.uri | http://hdl.handle.net/2003/40769 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-22626 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Computational methods and function theory;Vol. 21. 2021, pp 565–585 | |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Linear differential equation | en |
dc.subject | Laplace contour integral | en |
dc.subject | Asymptotic expansion | en |
dc.subject | Order of growth | en |
dc.subject | Phragmén–Lindelöf indicator | en |
dc.subject | Sub-normal solution | en |
dc.subject | Function of complete regular growth | en |
dc.subject | Distribution of zeros | en |
dc.subject.ddc | 520 | |
dc.title | Laplace contour integrals and linear differential equations | de |
dc.type | Text | de |
dc.type.publicationtype | article | de |
dcterms.accessRights | open access | |
eldorado.secondarypublication | true | de |
eldorado.secondarypublication.primarycitation | Computational methods and function theory. Vol. 21. 2021, pp 565–585 | en |
eldorado.secondarypublication.primaryidentifier | https://doi.org/10.1007/s40315-021-00397-2 | de |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Steinmetz2021_Article_LaplaceContourIntegralsAndLine.pdf
- Size:
- 374.9 KB
- Format:
- Adobe Portable Document Format
- Description:
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.85 KB
- Format:
- Item-specific license agreed upon to submission
- Description: