Sound absorption by perforated walls along boundaries

dc.contributor.authorDonato, Patrizia
dc.contributor.authorLamacz, Agnes
dc.contributor.authorSchweizer, Ben
dc.date.accessioned2020-07-17T14:12:41Z
dc.date.available2020-07-17T14:12:41Z
dc.date.issued2020-06-03
dc.description.abstractWe analyze the Helmholtz equation in a complex domain. A sound absorbing structure at a part of the boundary is modelled by a periodic geometry with periodicity ε > 0. A resonator volume of thickness ε is connected with thin channels (opening ε^3) with the main part of the macroscopic domain. For this problem with three different scales we analyze solutions in the limit ε → 0 and find that the effective system can describe sound absorption.en
dc.identifier.urihttp://hdl.handle.net/2003/39206
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-21123
dc.language.isoen
dc.subjectHelmholtz equationen
dc.subjectsound absorbersen
dc.subjecthomogenizationen
dc.subjectcomplex domainen
dc.subject.ddc610
dc.titleSound absorption by perforated walls along boundariesen
dc.typeTextde
dc.type.publicationtypepreprinten
dcterms.accessRightsopen access
eldorado.secondarypublicationfalse

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Preprint 2020-02 Donato, Lamacz, Schweizer.pdf
Size:
452.67 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: