Sound absorption by perforated walls along boundaries
dc.contributor.author | Donato, Patrizia | |
dc.contributor.author | Lamacz, Agnes | |
dc.contributor.author | Schweizer, Ben | |
dc.date.accessioned | 2020-07-17T14:12:41Z | |
dc.date.available | 2020-07-17T14:12:41Z | |
dc.date.issued | 2020-06-03 | |
dc.description.abstract | We analyze the Helmholtz equation in a complex domain. A sound absorbing structure at a part of the boundary is modelled by a periodic geometry with periodicity ε > 0. A resonator volume of thickness ε is connected with thin channels (opening ε^3) with the main part of the macroscopic domain. For this problem with three different scales we analyze solutions in the limit ε → 0 and find that the effective system can describe sound absorption. | en |
dc.identifier.uri | http://hdl.handle.net/2003/39206 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-21123 | |
dc.language.iso | en | |
dc.subject | Helmholtz equation | en |
dc.subject | sound absorbers | en |
dc.subject | homogenization | en |
dc.subject | complex domain | en |
dc.subject.ddc | 610 | |
dc.title | Sound absorption by perforated walls along boundaries | en |
dc.type | Text | de |
dc.type.publicationtype | preprint | en |
dcterms.accessRights | open access | |
eldorado.secondarypublication | false |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Preprint 2020-02 Donato, Lamacz, Schweizer.pdf
- Size:
- 452.67 KB
- Format:
- Adobe Portable Document Format
- Description:
- DNB
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 4.85 KB
- Format:
- Item-specific license agreed upon to submission
- Description: