S-estimation in the nonlinear regression model with long-memory error terms

dc.contributor.authorSibbertsen, Philippde
dc.date.accessioned2004-12-06T18:39:44Z
dc.date.available2004-12-06T18:39:44Z
dc.date.issued1999de
dc.description.abstractIn this paper we consider the asymptotic distribution of S-estimators in the nonlinear regression model with long-memory error terms. S-estimators are robust estimates with a high breakdown point and good asymptotic properties in the iid case. They are constructed for linear regression. In the nonlinear regression model with long-memory errors it turns out, that S-estimators are asymptotically normal with a rate of convergence of n^1-H , 1/2<H<1. But the distribution depends heavily on the unknown parameter vector.en
dc.format.extent153170 bytes
dc.format.extent336459 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/postscript
dc.identifier.urihttp://hdl.handle.net/2003/4923
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-5408
dc.language.isoende
dc.publisherUniversitätsbibliothek Dortmundde
dc.subjectlong-range dependenceen
dc.subjectnonlinear regression modelen
dc.subjectrobustnessen
dc.subject.ddc310de
dc.titleS-estimation in the nonlinear regression model with long-memory error termsen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
99_36.pdf
Size:
149.58 KB
Format:
Adobe Portable Document Format
Description:
DNB
No Thumbnail Available
Name:
tr36-99.ps
Size:
328.57 KB
Format:
Postscript Files