S-estimation in the nonlinear regression model with long-memory error terms
dc.contributor.author | Sibbertsen, Philipp | de |
dc.date.accessioned | 2004-12-06T18:39:44Z | |
dc.date.available | 2004-12-06T18:39:44Z | |
dc.date.issued | 1999 | de |
dc.description.abstract | In this paper we consider the asymptotic distribution of S-estimators in the nonlinear regression model with long-memory error terms. S-estimators are robust estimates with a high breakdown point and good asymptotic properties in the iid case. They are constructed for linear regression. In the nonlinear regression model with long-memory errors it turns out, that S-estimators are asymptotically normal with a rate of convergence of n^1-H , 1/2<H<1. But the distribution depends heavily on the unknown parameter vector. | en |
dc.format.extent | 153170 bytes | |
dc.format.extent | 336459 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | application/postscript | |
dc.identifier.uri | http://hdl.handle.net/2003/4923 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-5408 | |
dc.language.iso | en | de |
dc.publisher | Universitätsbibliothek Dortmund | de |
dc.subject | long-range dependence | en |
dc.subject | nonlinear regression model | en |
dc.subject | robustness | en |
dc.subject.ddc | 310 | de |
dc.title | S-estimation in the nonlinear regression model with long-memory error terms | en |
dc.type | Text | de |
dc.type.publicationtype | report | en |
dcterms.accessRights | open access |