Optically excited Zeeman coherences in atomic ground states
No Thumbnail Available
Date
1992-07
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
The American Physical Society
Abstract
Optical experiments in alkali-metal atomic gases are usually interpreted in terms of the J=1/2 ground state, treating the electronic ground state as a degenerate two-level system. While this simplified level scheme has been quite successful in describing many experimental results, the nuclear spin can lead to significant modifications of the behavior. Apart from the obvious differences, such as the existence of hyperfine splitting, some more subtle effects are present that modify the dynamical as well as the equilibrium behavior of the system. An an example, the optical pumping process in the true atomic ground state is nonexponential and slower by at least an order of magnitude, compared to a hypothetical atom with nuclear spin zero. The limitations of the J=1/2 model are analyzed theoretically and experimentally for atomic sodium, and experimental methods are demonstrated that can help disentangle the contributions from different hyperfine components.
Description
Table of contents
Keywords
Citation
Suter, Dieter: Optically Excited Zeeman Coherences in Atomic Groundstates: Nuclear Spin Effects, In: Phys. Rev. A 46. 1992, 344-350.