Homogenization of Maxwell’s equations with split rings
dc.contributor.author | Bouchitté, Guy | |
dc.contributor.author | Schweizer, Ben | |
dc.date.accessioned | 2008-07-16T06:59:51Z | |
dc.date.available | 2008-07-16T06:59:51Z | |
dc.date.issued | 2008-07-16T06:59:51Z | |
dc.description.abstract | We analyze the time harmonic Maxwell’s equations in a complex geometry. The scatterer Omega subset R^3 contains a periodic pattern of small wire structures of high conductivity, the single element has the shape of a split ring. We rigorously derive effective equations for the scatterer and provide formulas for the effective permittivity and permeability. The latter turns out to be frequency dependent and has a negative real part for appropriate parameter values. This magnetic activity is the key feature of a left-handed meta-material. | en |
dc.identifier.citation | Schweizer, Ben; Bouchitté, Guy: Homogenization of Maxwell's Equations in a Split Ring Geometry. - In: Multiscale Model. Simul. Volume 8, Issue 3, pp. 717-750 (2010) | |
dc.identifier.issn | 1540-3459 | |
dc.identifier.uri | http://hdl.handle.net/2003/25743 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-15319 | |
dc.identifier.url | http://dx.doi.org/10.1137/09074557X | |
dc.language.iso | en | de |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.relation.ispartofseries | Preprints der Fakultät für Mathematik;2008-16 | de |
dc.rights | ©2010 Society for Industrial and Applied Mathematics | en |
dc.subject.ddc | 510 | |
dc.title | Homogenization of Maxwell’s equations with split rings | en |
dc.type | Text | de |
dc.type.publicationtype | preprint | de |
dcterms.accessRights | open access |