The adaptive Lasso in high dimensional sparse heteroscedastic models

dc.contributor.authorDette, Holger
dc.contributor.authorWagener, Jens
dc.date.accessioned2011-07-04T12:11:21Z
dc.date.available2011-07-04T12:11:21Z
dc.date.issued2011-07-04
dc.description.abstractIn this paper we study the asymptotic properties of the adaptive Lasso estimate in high dimensional sparse linear regression models with heteroscedastic errors. It is demonstrated that model selection properties and asymptotic normality of the selected parameters remain valid but with a suboptimal asymptotic variance. A weighted adaptive Lasso estimate is introduced and is investigated. In particular, it is shown that the new estimate performs consistent model selection and that linear combinations of the estimates corresponding to the non-vanishing components are asymptotically normally distributed with a smaller variance than those obtained by the "classical" adaptive Lasso. The results are illustrated in a data example and by means of a small simulation study.en
dc.identifier.urihttp://hdl.handle.net/2003/28899
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-1628
dc.language.isoende
dc.relation.ispartofseriesDiscussion Paper / SFB 823;21/2011en
dc.subjectheteroscedasticityen
dc.subjecthigh dimensional dataen
dc.subjectpenalized regressionen
dc.subjectvariable selectionen
dc.subject.ddc310
dc.subject.ddc330
dc.subject.ddc620
dc.titleThe adaptive Lasso in high dimensional sparse heteroscedastic modelsen
dc.typeTextde
dc.type.publicationtypeworkingPaperde
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
DP_2111_SFB823_Wagener_Dette.pdf
Size:
333.67 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1018 B
Format:
Item-specific license agreed upon to submission
Description: