Wartungsarbeiten: Am 16.01.2025 von ca. 8:00 bis 11:00 Uhr steht Ihnen das System nicht zur Verfügung. Bitte stellen Sie sich entsprechend darauf ein.
 

A martingale-transform goodness-of-fit test for the form of the conditional variance

Loading...
Thumbnail Image

Date

2008-11-26T14:35:29Z

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In the common nonparametric regression model the problem of testing for a specific para- metric form of the variance function is considered. Recently Dette and Hetzler (2008) proposed a test statistic, which is based on an empirical process of pseudo residuals. The process converges weakly to a Gaussian process with a complicated covariance kernel depending on the data generating process. In the present paper we consider a standardized version of this process and propose a martingale transform to obtain asymptotically distribution free tests for the corresponding Kolmogorov-Smirnov and Cramer-von-Mises functionals. The finite sample properties of the proposed tests are investigated by means of a simulation study.

Description

Table of contents

Keywords

Conditional variance, Goodness-of-fit test, Martingale transform, Nonparametric regression

Citation