Electrical and mechanical behaviour of metal thin films with deformation-induced cracks predicted by computational homogenisation

dc.contributor.authorKaiser, Tobias
dc.contributor.authorCordill, Megan J.
dc.contributor.authorKirchlechner, Christoph
dc.contributor.authorMenzel, Andreas
dc.date.accessioned2022-06-13T13:39:14Z
dc.date.available2022-06-13T13:39:14Z
dc.date.issued2021-10-05
dc.description.abstractMotivated by advances in flexible electronic technologies and by the endeavour to develop non-destructive testing methods, this article analyses the capability of computational multiscale formulations to predict the influence of microscale cracks on effective macroscopic electrical and mechanical material properties. To this end, thin metal films under mechanical load are experimentally analysed by using in-situ confocal laser scanning microscopy (CLSM) and in-situ four point probe resistance measurements. Image processing techniques are then used to generate representative volume elements from the laser intensity images. These discrete representations of the crack pattern at the microscale serve as the basis for the calculation of effective macroscopic electrical conductivity and mechanical stiffness tensors by means of computational homogenisation approaches. A comparison of simulation results with experimental electrical resistance measurements and a detailed study of fundamental numerical properties demonstrates the applicability of the proposed approach. In particular, the (numerical) errors that are induced by the representative volume element size and by the finite element discretisation are studied, and the influence of the filter that is used in the generation process of the representative volume element is analysed.en
dc.identifier.urihttp://hdl.handle.net/2003/40953
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-22803
dc.language.isoende
dc.relation.ispartofseriesInternational journal of fracture;Bd 231. 2021, H. 2, S. 223-242
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectComputational multiscale simulationsen
dc.subjectComputational homogenisationen
dc.subjectScale-bridgingen
dc.subjectElectrical resistanceen
dc.subjectMicrocrackingen
dc.subjectAnisotropic conductivityen
dc.subjectHeterogeneous microstructuresen
dc.subject.ddc620
dc.subject.ddc670
dc.subject.rswkZerstörungsfreie Werkstoffprüfungde
dc.subject.rswkMetallisches Glasde
dc.subject.rswkDünne Schichtde
dc.subject.rswkMikrorissde
dc.subject.rswkKonfokale Mikroskopiede
dc.subject.rswkComputersimulationde
dc.subject.rswkWiderstand <Elektrotechnik>de
dc.subject.rswkLeitfähigkeitde
dc.subject.rswkMikrostrukturde
dc.titleElectrical and mechanical behaviour of metal thin films with deformation-induced cracks predicted by computational homogenisationen
dc.typeTextde
dc.type.publicationtypearticlede
dcterms.accessRightsopen access
eldorado.secondarypublicationtruede
eldorado.secondarypublication.primarycitationInternational journal of fracture. Band 231. 2021, Heft 2, Seiten 223-242de
eldorado.secondarypublication.primaryidentifierhttps://doi.org/10.1007/s10704-021-00582-3de

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kaiser2021_Article_ElectricalAndMechanicalBehavio.pdf
Size:
2.71 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
4.85 KB
Format:
Item-specific license agreed upon to submission
Description: