Strong consistency for delta sequence ratios

dc.contributor.authorPoniatowski, Wladyslaw
dc.contributor.authorWeißbach, Rafael
dc.date.accessioned2009-01-13T07:57:09Z
dc.date.available2009-01-13T07:57:09Z
dc.date.issued2009-01-13T07:57:09Z
dc.description.abstractAlmost sure convergence for ratios of delta functions establishes global and local strong consistency for a variety of estimates and data generations. For instance, the empirical probability function from independent identically distributed random vectors, the empirical distribution for univariate independent identically distributed observations, and the kernel hazard rate estimate for right-censored and left-truncated data are covered. The convergence rates derive from the Bennett-Hoeffding inequality. 62G05,62G20, 62N02, 60G57, 60G50en
dc.identifier.urihttp://hdl.handle.net/2003/25986
dc.identifier.urihttp://dx.doi.org/10.17877/DE290R-12770
dc.language.isoende
dc.subjectEmpirical processen
dc.subjectHazard rateen
dc.subjectKernel smoothingen
dc.subjectLeft-truncationen
dc.subjectRight-censoringen
dc.subject.ddc004
dc.titleStrong consistency for delta sequence ratiosen
dc.typeTextde
dc.type.publicationtypereporten
dcterms.accessRightsopen access

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
TR_20-Weissbach.pdf
Size:
109.73 KB
Format:
Adobe Portable Document Format
Description:
DNB
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.92 KB
Format:
Item-specific license agreed upon to submission
Description: