Approximation of SDEs by population-size-dependent Galton-Watson processes
dc.contributor.author | Zähle, Henryk | |
dc.date.accessioned | 2009-01-14T11:41:53Z | |
dc.date.available | 2009-01-14T11:41:53Z | |
dc.date.issued | 2009-01-14T11:41:53Z | |
dc.description.abstract | A certain class of stochastic differential equations, containing the Cox-Ingersoll-Ross model and the geometric Brownian motion, is considered. The corresponding solutions are approximated weakly by discrete-time population-size-dependent Galton-Watson processes with immigration. The long-time behavior of the limiting processes is also investigated. | en |
dc.identifier.uri | http://hdl.handle.net/2003/25998 | |
dc.identifier.uri | http://dx.doi.org/10.17877/DE290R-14437 | |
dc.language.iso | en | de |
dc.relation.ispartofseries | Preprints der Fakultät für Mathematik;2009-01 | de |
dc.subject | stochastic differential equation | en |
dc.subject | Galton-Watson process | en |
dc.subject | populationsize-dependent branching | en |
dc.subject | weak convergence | en |
dc.subject | martingale problem | en |
dc.subject | Doob-Meyer decomposition | en |
dc.subject | Cox-Ingersoll-Ross model | en |
dc.subject.ddc | 610 | |
dc.title | Approximation of SDEs by population-size-dependent Galton-Watson processes | en |
dc.type | Text | de |
dc.type.publicationtype | preprint | en |
dcterms.accessRights | open access |